martes, 27 de abril de 2010

Leonardo Vides

Taller De Conceptos De Física





Docente: David Alberto García.
Leonardo Vides.



Ingeniería Industrial.



Universidad de Antioquia.


Onda: En física, una onda es una propagación de una perturbación de alguna propiedad de un medio, por ejemplo, densidad, presión, campo eléctrico o campo magnético, que se propaga a través del espacio transportando energía. El medio perturbado puede ser de naturaleza diversa como aire, agua, un trozo de metal o el vacío. La propiedad del medio en la que se observa la particularidad se expresa como una función tanto de la posición como del tiempo . Matemáticamente se dice que dicha función es una onda si verifica la ecuación de ondas:
donde v es la velocidad de propagación de la onda. Por ejemplo, ciertas perturbaciones de la presión de un medio, llamadas sonido, verifican la ecuación anterior, aunque algunas ecuaciones no lineales también tienen soluciones ondulatorias, por ejemplo, un saltón.
Periodicidad espacial: La longitud de onda introduce el concepto de periodicidad espacial (que se añade al de periodicidad temporal asociado al periodo T) para los movimientos ondulatorios periódicos, ya que la función de onda se puede escribir de manera que:
Periodicidad temporal: U es el valor máximo, o amplitud del movimiento, lambda es la longitud de onda y T es el periodo de la onda senoidal. En esta solución aparece una "periodicidad espacial" (si detenemos al tiempo, como si sacásemos una fotografía, aparece una forma senoidal) y también una "periodicidad temporal" (si nos detenemos en un punto del espacio, la magnitud u varía en el tiempo en forma senoidal. A la periodicidad espacial se la caracteriza por el "número de onda", mientras que a la periodicidad temporal se la caracteriza mediante la "velocidad angular":

Rapidez de fase: La velocidad de fase de una onda es la tasa a la cual la fase de la misma se propaga en el espacio. Ésta es la velocidad a la cual la fase de cualquier componente en frecuencia de una onda se propaga (que puede ser diferente para cada frecuencia). Si tomamos una fase en particular de la onda (por ejemplo un máximo), ésta parecerá estar viajando a dicha velocidad. La velocidad de fase está dada en términos de la velocidad angular de la onda ω y del vector de onda k por la relación:
Hay que tener en cuenta que la velocidad de fase no es necesariamente igual a la velocidad de grupo de una onda, que es la tasa a la cual viaja la energía almacenada en la onda. La velocidad de fase de la radiación electromagnética puede en ciertas circunstancias ser superior a la velocidad de la luz en el vacío, pero esto no implica que haya transmisión de energía por encima de dicha velocidad.



Desfase: El desfase entre dos ondas es la diferencia entre sus dos fases. Habitualmente, esta diferencia de fases, se mide en un mismo instante para las dos ondas, pero no siempre en un mismo lugar del espacio. Se puede medir el desfase como: --Un ángulo (en radianes o en grados o aún en giros). - -Un tiempo (en segundos o como un múltiplo o una fracción del período). -Una distancia (en metros o como un múltiplo o una fracción de la longitud de onda). La noción de desfase no se limita a las ondas sinusoidales. Se puede hablar de desfase de cualquier tipo de onda o fenómeno periódico. En el caso de ondas o fenómenos de período diferente, el desfase puede carecer de interés.
Onda armónica: el modelo descrito para las ondas armónicas no sirve para describir estructuras periódicas más complicadas: las ondas enarmónicas. Joseph Fourier demostró que las ondas periódicas con formas complicadas pueden considerarse como suma de ondas armónicas (cuyas frecuencias son siempre múltiplos enteros de la frecuencia fundamental). Así, supongamos que representa el desplazamiento periódico de una onda en una cierta posición. Si y su derivada son continuas, puede demostrarse que dicha función puede representarse mediante una suma del tipo:
Polarización: Cualquier onda se puede descomponer en dos polarizaciones lineales ortogonales, sin más que proyectar el campo eléctrico sobre vectores unitarios orientados según dichas direcciones. Aplicando el mismo principio, cualquier onda se puede descomponer en dos ondas polarizadas circularmente a derechas o izquierdas.
Ondas planas: Existe también una tercera forma de clasificar los movimientos ondulatorios atendiendo a la forma del frente de onda (ondas planas, esféricas, circulares......). En particular, para un campo electromagnético, una onda plana se puede escribir
E = Re(e exp (it-imx-ivy-iwz)) H = Re(h exp (it-imx-ivy-iwz))
Ondas esféricas: Una onda esférica, en física, es aquella onda tridimensional que se propaga a la misma velocidad en todas direcciones. Se llama onda esférica porque sus frentes de ondas son esferas concéntricas, cuyos centros coinciden con la posición de la fuente de perturbación. Las ondas sonoras son ondas esféricas cuando se propagan a través de un medio homogéneo, como el aire o el agua en reposo. También la luz se propaga en forma de ondas esféricas en el aire, el agua, o a través del vacío.
Efecto Doppler: El efecto Doppler, llamado así por el austríaco Christian Doppler, es el cambio en la frecuencia de una onda producido por el movimiento de la fuente respecto a su observador. Doppler propuso este efecto en 1842 en su tratado Über das farbige Licht der Doppelsterne und einige andere Gestirne des Himmels (Sobre el color de la luz en estrellas binarias y otros astros).
El científico holandés Christoph Hendrik Diederik Buys Ballot investigó esta hipótesis en 1845 para el caso de ondas sonoras y confirmó que el tono de un sonido emitido por una fuente que se aproxima al observador es más agudo que si la fuente se aleja. Hippolyte Fizeau descubrió independientemente el mismo fenómeno en el caso de ondas electromagnéticas en 1848. En Francia este efecto se conoce como "Efecto Doppler-Fizeau".


Un micrófono inmóvil registra las sirenas de los policías en movimiento en diversos tonos dependiendo de su dirección relativa.
En el caso del espectro visible de la radiación electromagnética, si el objeto se aleja, su luz se desplaza a longitudes de onda más largas, desplazándose hacia el rojo. Si el objeto se acerca, su luz presenta una longitud de onda más corta, desplazándose hacia el azul. Esta desviación hacia el rojo o el azul es muy leve incluso para velocidades elevadas, como las velocidades relativas entre estrellas o entre galaxias, y el ojo humano no puede captarlo, solamente medirlo indirectamente utilizando instrumentos de precisión como espectrómetros. Si el objeto emisor se moviera a fracciones significativas de la velocidad de la luz, entonces sí seria apreciable de forma directa la variación de longitud de onda.
Sin embargo hay ejemplos cotidianos de efecto Doppler en los que la velocidad a la que se mueve el objeto que emite las ondas es comparable a la velocidad de propagación de esas ondas. La velocidad de una ambulancia (50 km/h) puede parecer insignificante respecto a la velocidad del sonido al nivel del mar (unos 1.235 km/h), sin embargo se trata de aproximadamente un 4% de la velocidad del sonido, fracción suficientemente grande como para provocar que se aprecie claramente el cambio del sonido de la sirena desde un tono más agudo a uno más grave, justo en el momento en que el vehículo pasa al lado del observador.

No hay comentarios:

Publicar un comentario